Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 14(1): 3640, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409201

RESUMEN

Repetitive, long-term inhalation of radioactive radon gas is one of the leading causes of lung cancer, with exposure differences being a function of geographic location, built environment, personal demographics, activity patterns, and decision-making. Here, we examine radon exposure disparities across the urban-to-rural landscape, based on 42,051 Canadian residential properties in 2034 distinct communities. People living in rural, lower population density communities experience as much as 31.2% greater average residential radon levels relative to urban equivalents, equating to an additional 26.7 Bq/m3 excess in geometric mean indoor air radon, and an additional 1 mSv/year in excess alpha radiation exposure dose rate to the lungs for occupants. Pairwise and multivariate analyses indicate that community-based radon exposure disparities are, in part, explained by increased prevalence of larger floorplan bungalows in rural areas, but that a majority of the effect is attributed to proximity to, but not water use from, drilled groundwater wells. We propose that unintended radon gas migration in the annulus of drilled groundwater wells provides radon migration pathways from the deeper subsurface into near-surface materials. Our findings highlight a previously under-appreciated determinant of radon-induced lung cancer risk, and support a need for targeted radon testing and reduction in rural communities.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Agua Subterránea , Neoplasias Pulmonares , Monitoreo de Radiación , Radón , Humanos , Radón/efectos adversos , Radón/análisis , Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Población Rural , Vivienda , Canadá , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología
2.
Stat Med ; 43(6): 1153-1169, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221776

RESUMEN

Wastewater-based surveillance has become an important tool for research groups and public health agencies investigating and monitoring the COVID-19 pandemic and other public health emergencies including other pathogens and drug abuse. While there is an emerging body of evidence exploring the possibility of predicting COVID-19 infections from wastewater signals, there remain significant challenges for statistical modeling. Longitudinal observations of viral copies in municipal wastewater can be influenced by noisy datasets and missing values with irregular and sparse samplings. We propose an integrative Bayesian framework to predict daily positive cases from weekly wastewater observations with missing values via functional data analysis techniques. In a unified procedure, the proposed analysis models severe acute respiratory syndrome coronavirus-2 RNA wastewater signals as a realization of a smooth process with error and combines the smooth process with COVID-19 cases to evaluate the prediction of positive cases. We demonstrate that the proposed framework can achieve these objectives with high predictive accuracies through simulated and observed real data.


Asunto(s)
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiología , Pandemias , ARN Viral/genética , SARS-CoV-2/genética , Aguas Residuales
3.
Ground Water ; 61(1): 86-99, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054598

RESUMEN

Total dissolved gas pressure (PTDG ) measurements are useful to measure accurate in situ dissolved gas concentrations in groundwater, but challenged by in-well degassing. Although in-well degassing has been widely observed, its cause(s) are not clear. We investigated the mechanism(s) by which gas-charged groundwater in a recently pumped well becomes degassed. Vertical PTDG and dissolved gas concentration profiles were monitored in the standing water column (SWC) of a groundwater well screened in a gas-charged aquifer for 7 days before and 15 days after pumping. Prior to pumping, PTDG values remained relatively constant and below calculated bubbling pressure (PBUB ) at all depths. In contrast, significant increases in PTDG were observed at all depths after pumping was initiated, as fresh groundwater with elevated in situ PTDG values was pumped through the well screen. After pumping ceased, PTDG values decreased to below PBUB at all depths over the 15-day post-pumping period, indicating well degassing was active over this time frame. Vertical profiles of estimated dissolved gas concentrations before and after pumping provided insight into the mechanism(s) by which in-well degassing occurred in the SWC. During both monitoring periods, downward mixing of dominant atmospheric and/or tracer gases, and upwards mixing of dominant groundwater gases were observed in the SWC. The key mechanisms responsible for in-well degassing were (i) bubble exsolution when PTDG exceeded PBUB as gas-charged well water moves upwards in the SWC during recovery (i.e., hydraulic gradient driven convection), (ii) microadvection caused by the upward migration of bubbles under buoyancy, and (iii) long-term, thermally driven vertical convection.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Gases/análisis , Pozos de Agua , Contaminantes Químicos del Agua/análisis , Agua , Monitoreo del Ambiente
4.
Emerg Infect Dis ; 28(9): 1770-1776, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35867051

RESUMEN

Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Alberta/epidemiología , COVID-19/epidemiología , Humanos , SARS-CoV-2/genética , Aguas Residuales
5.
Water Res ; 220: 118611, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661506

RESUMEN

Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.44 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December 2020) and the third-wave of the COVID-19 pandemic (mid-April to May 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06% (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals' primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 & N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgary's three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.


Asunto(s)
COVID-19 , Humanos , Pandemias , ARN Viral , SARS-CoV-2 , Población Urbana , Aguas Residuales
6.
JAMA Pediatr ; 176(6): 585-592, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35377398

RESUMEN

Importance: The association between hydraulic fracturing and human development is not well understood. Several studies have identified significant associations between unconventional natural gas development and adverse birth outcomes; however, geology and legislation vary between regions. Objective: To examine the overall association between residential proximity to hydraulic fracturing sites and adverse birth outcomes, and investigate whether well density influenced this association. Design, Setting, and Participants: This population-based retrospective cohort study of pregnant individuals in rural Alberta, Canada, took place from 2013 to 2018. Participants included reproductive-aged individuals (18-50 years) who had a pregnancy from January 1, 2013, to December 31, 2018, and lived in rural areas. Individuals were excluded if they lived in an urban setting, were outside of the age range, or were missing data on infant sex, postal code, or area-level socioeconomic status. Exposures: Oil and gas wells that underwent hydraulic fracturing between 2013 to 2018 were identified through the Alberta Energy Regulator (n = 4871). Individuals were considered exposed if their postal delivery point was located within 10 km of 1 or more wells that was hydraulically fractured during 1 year preconception or during pregnancy. Main Outcomes and Measures: Outcomes investigated were spontaneous and indicated preterm birth, small for gestational age, major congenital anomalies, and severe neonatal morbidity or mortality. Results: After exclusions, the sample included 26 193 individuals with 34 873 unique pregnancies, and a mean (SD) parental age of 28.2 (5.2) years. Small for gestational age and major congenital anomalies were significantly higher for individuals who lived within 10 km of at least 1 hydraulically fractured well after adjusting for parental age at delivery, multiple births, fetal sex, obstetric comorbidities, and area-level socioeconomic status. Risk of spontaneous preterm birth and small for gestational age were significantly increased in those with 100 or more wells within 10 km. Conclusions and Relevance: Results suggest that individuals who were exposed to hydraulic fracturing within pregnancy may be at higher risk of several adverse birth outcomes. These results may be relevant to health policy regarding legislation of unconventional oil and gas development in Canada and internationally.


Asunto(s)
Fracking Hidráulico , Enfermedades del Recién Nacido , Nacimiento Prematuro , Adulto , Alberta/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Embarazo , Resultado del Embarazo/epidemiología , Nacimiento Prematuro/epidemiología , Estudios Retrospectivos
7.
Sci Total Environ ; 820: 153092, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35038526

RESUMEN

Nitrate pollution is a major threat to groundwater quality in agricultural areas. Natural attenuation of nitrate in contaminated aquifers is mediated by denitrifying microbial populations in anoxic environments. Vertical distribution of denitrifying microbial communities in aquifers is greatly influenced by groundwater redox conditions, local hydrogeological parameters, and seasonal variability in groundwater flow and recharge. In this study, we investigated groundwater geochemistry and the composition of bacterial and archaeal communities with increasing depth in a shallow nitrate-contaminated aquifer in British Columbia, Canada. High-resolution passive diffusion sampling was conducted to collect groundwater at 10-cm intervals from 4 to 20 m below ground surface (mbgs) in the aquifer. Geochemical analyses of major ions indicated a general shift in the groundwater chemistry below 16 mbgs including decreasing chloride concentrations that suggest two-end member mixing of shallow and deep groundwater with different chemistries. A redoxcline was further observed within a 2 m transition zone at 18-20 mbgs characterized by sharp declines in nitrate concentrations and increases in sulfate and total inorganic carbon. Excursions in δ15N-NO3- and δ18O-NO3- in the same depth interval are consistent with denitrification, and a concomitant decrease in δ34S-SO42- suggested that denitrification was coupled to sulfide or sulfur oxidation. Microbial communities within this depth interval were significantly dissimilar to those above and below, featuring putative lithotrophic denitrifying bacteria belonging to the genera Sulfurifustis, Sulfuritalea and Sulfuricella. These lineages were detected in greatest abundance at 19 mbgs while the abundances of putative heterotrophic sulfate-reducing bacteria belonging to the genus Desulfosporosinus were greatest at 20 mbgs. In addition to help distinguish denitrification from mixing-induced changes in groundwater chemistry, the above observed vertical stratification of the microbial key players connects nitrate removal to the locations of the aquifer sampled.


Asunto(s)
Agua Subterránea , Microbiota , Contaminantes Químicos del Agua , Colombia Británica , Desnitrificación , Agua Subterránea/química , Isótopos/análisis , Nitratos/análisis , Contaminantes Químicos del Agua/análisis
8.
Ground Water ; 60(2): 262-274, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34514597

RESUMEN

Detection of free-phase gas (FPG) in groundwater wells is critical for accurate assessment of dissolved gas concentrations and the occurrence of FPG in the subsurface, with consequent implications for understanding groundwater contamination and greenhouse gas emissions. However, identifying FPG is challenging during routine groundwater monitoring and there is poor agreement on the best approach to detect the occurrence of FPG in groundwater. In this study, laboratory experiments in a water column were designed to mimic nonflowing and flowing conditions in a groundwater well to evaluate how the presence of FPG affects water pressure and commonly used continuous field parameters. The laboratory results were extrapolated to interpret field data at an abandoned exploration well with episodic release of free-gas CO2 . The FPG effect on water pressure varied between flowing and nonflowing wells, and depending on whether the FPG was above or below the sensor. Electrical conductivity values were decreased and/or behaved erratically when FPG was present in the water column. Findings from this study have shown that the combined measurement of water pressure, electrical conductivity, and total dissolved gas pressure can provide information about the occurrence of FPG in groundwater wells. Measurement of these parameters at different depths can also provide information about relative depths and amounts of FPG within the well water column. This approach can be used for long-term monitoring of groundwater gases, managing gas-locking in production wells with gassy groundwater, and measuring fugitive greenhouse gas emissions from groundwater wells.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Gases/análisis , Metano/análisis , Yacimiento de Petróleo y Gas , Agua , Contaminantes Químicos del Agua/análisis , Pozos de Agua
9.
Water Res ; 201: 117369, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229222

RESUMEN

SARS-CoV-2 has been detected in wastewater and its abundance correlated with community COVID-19 cases, hospitalizations and deaths. We sought to use wastewater-based detection of SARS-CoV-2 to assess the epidemiology of SARS-CoV-2 in hospitals. Between August and December 2020, twice-weekly wastewater samples from three tertiary-care hospitals (totaling > 2100 dedicated inpatient beds) were collected. Hospital-1 and Hospital-2 could be captured with a single sampling point whereas Hospital-3 required three separate monitoring sites. Wastewater samples were concentrated and cleaned using the 4S-silica column method and assessed for SARS-CoV-2 gene-targets (N1, N2 and E) and controls using RT-qPCR. Wastewater SARS-CoV-2 as measured by quantification cycle (Cq), genome copies and genomes normalized to the fecal biomarker PMMoV were compared to the total daily number of patients hospitalized with active COVID-19, confirmed cases of hospital-acquired infection, and the occurrence of unit-specific outbreaks. Of 165 wastewater samples collected, 159 (96%) were assayable. The N1-gene from SARS-CoV-2 was detected in 64.1% of samples, N2 in 49.7% and E in 10%. N1 and N2 in wastewater increased over time both in terms of the amount of detectable virus and the proportion of samples that were positive, consistent with increasing hospitalizations at those sites with single monitoring points (Pearson's r = 0.679, P < 0.0001, Pearson's r = 0.799, P < 0.0001, respectively). Despite increasing hospitalizations through the study period, nosocomial-acquired cases of COVID-19 (Pearson's r = 0.389, P < 0.001) and unit-specific outbreaks were discernable with significant increases in detectable SARS-CoV-2 N1-RNA (median 112 copies/ml) versus outbreak-free periods (0 copies/ml; P < 0.0001). Wastewater-based monitoring of SARS-CoV-2 represents a promising tool for SARS-CoV-2 passive surveillance and case identification, containment, and mitigation in acute- care medical facilities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Humanos , Centros de Atención Terciaria , Carga Viral , Aguas Residuales
10.
Front Microbiol ; 12: 610389, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025593

RESUMEN

Denitrification is a microbial process that converts nitrate (NO3 -) to N2 and can play an important role in industrial applications such as souring control and microbially enhanced oil recovery (MEOR). The effectiveness of using NO3 - in souring control depends on the partial reduction of NO3 - to nitrite (NO2 -) and/or N2O while in MEOR complete reduction of NO3 - to N2 is desired. Thauera has been reported as a dominant taxon in such applications, but the impact of NO3 - and NO2 - concentrations, and pH on the kinetics of denitrification by this bacterium is not known. With the goal of better understanding the effects of such parameters on applications such as souring and MEOR, three strains of Thauera (K172, NS1 and TK001) were used to study denitrification kinetics when using acetate as an electron donor. At low initial NO3 - concentrations (∼1 mmol L-1) and at pH 7.5, complete NO3 - reduction by all strains was indicated by non-detectable NO3 - concentrations and near-complete recovery (> 97%) of the initial NO3-N as N2 after 14 days of incubation. The relative rate of denitrification by NS1 was low, 0.071 mmol L-1 d-1, compared to that of K172 (0.431 mmol L-1 d-1) and TK001 (0.429 mmol L-1 d-1). Transient accumulation of up to 0.74 mmol L-1 NO2 - was observed in cultures of NS1 only. Increased initial NO3 - concentrations resulted in the accumulation of elevated concentrations of NO2 - and N2O, particularly in incubations with K172 and NS1. Strain TK001 had the most extensive NO3 - reduction under high initial NO3 - concentrations, but still had only ∼78% of the initial NO3-N recovered as N2 after 90 days of incubation. As denitrification proceeded, increased pH substantially reduced denitrification rates when values exceeded ∼ 9. The rate and extent of NO3 - reduction were also affected by NO2 - accumulation, particularly in incubations with K172, where up to more than a 2-fold rate decrease was observed. The decrease in rate was associated with decreased transcript abundances of denitrification genes (nirS and nosZ) required to produce enzymes for reduction of NO2 - and N2O. Conversely, high pH also contributed to the delayed expression of these gene transcripts rather than their abundances in strains NS1 and TK001. Increased NO2 - concentrations, N2O levels and high pH appeared to cause higher stress on NS1 than on K172 and TK001 for N2 production. Collectively, these results indicate that increased pH can alter the kinetics of denitrification by Thauera strains used in this study, suggesting that liming could be a way to achieve partial denitrification to promote NO2 - and N2O production (e.g., for souring control) while pH buffering would be desirable for achieving complete denitrification to N2 (e.g., for gas-mediated MEOR).

11.
ISME J ; 14(6): 1547-1560, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203118

RESUMEN

Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation. An unusually high abundance of lysolipids attributed to CPR bacteria may represent an adaptation to membrane curvature stress induced by their small cell sizes. Our findings provide new insights into the carbon cycle in the deep subsurface and suggest the redistribution of lipids into putative symbionts within this community.


Asunto(s)
Dióxido de Carbono/metabolismo , Agua Subterránea/microbiología , Archaea/genética , Procesos Autotróficos , Bacterias/genética , Carbono/metabolismo , Ciclo del Carbono , Colorado , Ecosistema , Lípidos/análisis , Metagenoma , Filogenia
12.
Sci Total Environ ; 657: 717-730, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677937

RESUMEN

Nutrient dynamics in a 25 km long treated wastewater effluent impacted reach of a large, gravel-bed river were evaluated in five river compartments: surficial sediment, surface water, hyporheic zone water, and aquatic biomass (including epilithic algae and macrophytes). Nutrient storage within, and export from, the river reach, was quantified to assess the impact of WWTP effluent on nutrient dynamics. More than 98% of N and P storage was found in the surficial river bed sediment, where it is available to support epilithic algal and macrophyte growth. Nutrient export from the river reach by sediment, hyporheic water, and biomass were small compared to water column transport. The N:P ratios for the five different compartments suggested that the water column was severely P limited, whereas sediment, hyporheic water, and aquatic biomass tended towards co-limitation and N limitation. Within the river reach, the majority of P was stored immediately downstream of the WWTP effluent outfall, whereas N was retained at a higher rate relative to P in the remainder of the reach. Correlation analysis of nutrient exchange between different compartments suggested that multiple nutrient compartments should be considered when establishing nutrient loading criteria. Nutrient analysis in multiple compartments in the river can add valuable insight into nutrient dynamics and nutrient limitation.


Asunto(s)
Sedimentos Geológicos/análisis , Nitrógeno/análisis , Fósforo/análisis , Ríos , Alberta , Ciudades , Seguimiento de Parámetros Ecológicos , Plantas , Análisis Espacio-Temporal , Eliminación de Residuos Líquidos
13.
J Environ Qual ; 47(4): 795-804, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30025041

RESUMEN

The quantification of groundwater NO loading associated with a specific field or set of management practices so that groundwater quality improvements can be objectively assessed is a major challenge. The magnitude and timing of NO export from a single agricultural field under raspberry ( L.) production were investigated by combining high-resolution groundwater NO concentration profiles (sampled using passive diffusion samplers) with Darcy's flux estimation at the field's down-gradient edge (based on field-measured hydraulic gradients and laboratory-estimated hydraulic conductivity). Annual recharge estimated using Darcy's law (1002 mm) was similar to that obtained using two other approaches. The similarity in the rate of Cl applied to the field and the estimated export flux over the 1-yr monitoring period (51 vs. 56 kg Cl ha) suggested the mass flux estimation approach was robust. An estimated 80 kg NO-N ha was exported from the agricultural field over the 1-yr monitoring period. The greatest monthly groundwater mass flux exported was observed in February and March (∼11 kg NO-N ha), and was associated with NO leached from the soil zone during the onset of precipitation in the previous autumn. Provided the groundwater recharged from the field of interest can be isolated within a vertical profile, this approach is an effective method for obtaining spatially integrated estimates of the magnitude and timing of NO loading to groundwater.


Asunto(s)
Agua Subterránea/química , Nitratos/análisis , Monitoreo del Ambiente , Suelo , Contaminantes Químicos del Agua
14.
Nat Microbiol ; 3(3): 328-336, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29379208

RESUMEN

An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus "Altiarchaeum sp." and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. A nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. "Altiarchaeum". Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Sedimentos Geológicos/microbiología , Agua Subterránea/microbiología , Simbiosis , Archaea/crecimiento & desarrollo , Procesos Autotróficos , Bacterias/crecimiento & desarrollo , Ciclo del Carbono , Metagenómica , Filogenia
15.
J Environ Qual ; 46(3): 528-536, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28724099

RESUMEN

Source nitrogen (N) identification of leachate or groundwater nitrate is complicated by N source mixing and N and oxygen (O) isotope fractionation caused by microbial N transformations. This experiment examined the δN and δO values in leachate collected over 1 yr at 55 cm below raspberry ( L.) plots receiving either synthetic fertilizer (FT) or poultry manure (MT). The large ranges of δN (FT: -2.4 to +8.7‰, MT: +1.6 to +9.6‰) and δO (FT: -9.9 to -0.3‰, MT: -10.9 to +1.7‰) values in leachate collected under crop rows prohibited the reliable identification of the applied N sources on individual sampling dates. However, the mass-weighted average δN (FT: +3.2‰, MT: +7.3‰) values in leachate were significantly different and can be explained by accounting for the estimated contributions of nitrate and δN values of the various N sources, including applied fertilizer (-0.7‰) or manure (+7.9‰), nitrate-rich irrigation water (+9.0‰), and nitrate from soil N mineralization and nitrification (FT: +3.7‰, MT: +4.6‰; the seasonal timing of which is unknown). This study illustrates the importance of characterizing all major N sources and considering the seasonal variation of these sources and of N cycling processes, as they contribute to the δN values of leachate.


Asunto(s)
Agua Subterránea/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Isótopos de Nitrógeno
16.
Environ Monit Assess ; 188(8): 494, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27473108

RESUMEN

The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.


Asunto(s)
Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Algas Marinas/crecimiento & desarrollo , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Alberta , Amoníaco/análisis , Organismos Acuáticos/crecimiento & desarrollo , Biomasa , Nitratos/análisis , Estaciones del Año
17.
Environ Sci Technol ; 45(17): 7217-25, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21786759

RESUMEN

Anaerobic ammonium-oxidizing (anammox) bacteria perform an important step in the global nitrogen cycle: anaerobic oxidation of ammonium and reduction of nitrite to form dinitrogen gas (N(2)). Anammox organisms appear to be widely distributed in natural and artificial environments. However, their roles in groundwater ammonium attenuation remain unclear and only limited biomarker-based data confirmed their presence prior to this study. We used complementary molecular and isotope-based methods to assess anammox diversity and activity occurring at three ammonium-contaminated groundwater sites: quantitative PCR, denaturing gradient gel electrophoresis, sequencing of 16S rRNA genes, and (15)N-tracer incubations. Here we show that anammox performing organisms were abundant bacterial community members. Although all sites were dominated by Candidatus Brocadia-like sequences, the community at one site was particularly diverse, possessing four of five known genera of anammox bacteria. Isotope data showed that anammox produced up to 18 and 36% of N(2) at these sites. By combining molecular and isotopic results we have demonstrated the diversity, abundance, and activity of these autotrophic bacteria. Our results provide strong evidence for their important biogeochemical role in attenuating groundwater ammonium contamination.


Asunto(s)
Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Agua Subterránea/química , Agua Subterránea/microbiología , Compuestos de Amonio Cuaternario/metabolismo , Microbiología del Agua , Canadá , Isótopos de Nitrógeno/metabolismo , Oxidación-Reducción , Filogenia , Compuestos de Amonio Cuaternario/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
18.
Environ Sci Technol ; 41(24): 8388-93, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18200868

RESUMEN

A novel passive gas diffusion sampler (PGDS) combines sampling, storage and direct injection into a single gas chromatograph (GC). The sampler has a 4.5 mL internal volume when deployed, is easy to operate, and eliminates sample-partitioning. The associated GC method analyzes for a large, dynamic sampling range from a single, small volume injection. Dissolved gases were separated on parallel Rt-Molsieve 5A and Rt-Q-PLOT columns and eluted solutes were quantified using a pulse discharge helium ionization detector (PD-HID). The combined sampling and analytical method appears to be less prone to systematic bias than conventional sampling and headspace partitioning and analysis. Total dissolved gas pressure used in tandem with the PGDS improved the accuracy of dissolved gas concentrations. The incorporation of routine measurements of dissolved biogeochemical and permanent gases into groundwater investigations will provide increased insight into chemical and biological processes in groundwater and improve chemical mass balance accuracy.


Asunto(s)
Gases/análisis , Agua/química , Cromatografía de Gases , Solubilidad
19.
Environ Monit Assess ; 107(1-3): 45-57, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16418904

RESUMEN

We present an alternative method to dye tracer studies for mapping wastewater effluent plumes in rivers. A case study of a wastewater treatment effluent plume that was mapped in two different months (October and April) showed good resolution in determining where the plume reached the opposite river bank, the degree of mixing in a given river reach, and where the river was fully mixed with respect to the plume. Both electrical conductivity and chloride were useful in mapping domestic wastewater effluent plume mixing. Mixing lengths obtained by field mapping were consistent with previous studies. Electrical conductivity field readings facilitated real-time plume delineation and sampling locations, and identified a non-point source plume during the mapping exercise. The apparent difference in dispersion of the plume between to the two mapping dates (despite similar upstream river discharge) suggests that the calibration of a water quality model based on a single dye test may be inadequate. The river distributions of effluent nutrients and fecal coliform were also mapped. Nutrient attenuation rates were faster than that of the chloride tracer, indicating processes other than mixing occur. Substantial differences were observed in nutrient and fecal coliform distributions between the two mapping dates.


Asunto(s)
Enterobacteriaceae/aislamiento & purificación , Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Contaminantes del Agua/análisis , Agricultura , Cloruros/química , Cloruros/metabolismo , Conductividad Eléctrica , Enterobacteriaceae/crecimiento & desarrollo , Heces/microbiología , Fertilizantes , Medición de Riesgo , Factores de Tiempo , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...